Correlation Tracking via Spatial-Temporal Constraints and Structured Sparse Regularization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Sparse Canonical Correlation Analysis

In this paper, we propose to apply sparse canonical correlation analysis (sparse CCA) to an important genome-wide association study problem, eQTL mapping. Existing sparse CCA models do not incorporate structural information among variables such as pathways of genes. This work extends the sparse CCA so that it could exploit either the pre-given or unknown group structure via the structured-spars...

متن کامل

End-to-end Flow Correlation Tracking with Spatial-temporal Attention

Discriminative correlation filters (DCF) with deep convolutional features have achieved favorable performance in recent tracking benchmarks. However, most of existing DCF trackers only consider appearance features of current frame, and hardly benefit from motion and interframe information. The lack of temporal information degrades the tracking performance during challenges such as partial occlu...

متن کامل

Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking

Discriminative Correlation Filters (DCF) are efficient in visual tracking but suffer from unwanted boundary effects. Spatially Regularized DCF (SRDCF) has been suggested to resolve this issue by enforcing spatial penalty on DCF coefficients, which, inevitably, improves the tracking performance at the price of increasing complexity. To tackle online updating, SRDCF formulates its model on multip...

متن کامل

Sparse Portfolio Selection via Quasi-Norm Regularization

to obtain an approximate second-order KKT solution of the `p-norm models in polynomial time with a fixed error tolerance, and then test our `p-norm models on CRSP(1992-2013) and also S&P 500 (2008-2012) data. The empirical results illustrate that our `p-norm regularized models can generate portfolios of any desired sparsity with portfolio variance, portfolio return and Sharpe Ratio comparable t...

متن کامل

Group Sparse Optimization via lp, q Regularization

In this paper, we investigate a group sparse optimization problem via `p,q regularization in three aspects: theory, algorithm and application. In the theoretical aspect, by introducing a notion of group restricted eigenvalue condition, we establish an oracle property and a global recovery bound of order O(λ 2 2−q ) for any point in a level set of the `p,q regularization problem, and by virtue o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: 2169-3536

DOI: 10.1109/access.2021.3086821